Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
2.
Cell Mol Neurobiol ; 44(1): 43, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703332

RESUMO

Cell transplantation is a promising treatment option for spinal cord injury (SCI). However, there is no consensus on the choice of carrier scaffolds to host the cells. This study aims to evaluate the efficacy of different material scaffold-mediated cell transplantation in treating SCI in rats. According to PRISMA's principle, Embase, PubMed, Web of Science, and Cochrane databases were searched, and relevant literature was referenced. Only original research on cell transplantation plus natural or synthetic scaffolds in SCI rats was included. Direct and indirect evidence for improving hind limb motor function was pooled through meta-analysis. A subgroup analysis of some factors that may affect the therapeutic effect was conducted to understand the results fully. In total, 25 studies met the inclusion criteria, in which 293 rats received sham surgery, 78 rats received synthetic material scaffolds, and 219 rats received natural materials scaffolds. The network meta-analysis demonstrated that although synthetic scaffolds were slightly inferior to natural scaffolds in terms of restoring motor function in cell transplantation of SCI rats, no statistical differences were observed between the two (MD: -0.35; 95% CI -2.6 to 1.9). Moreover, the subgroup analysis revealed that the type and number of cells may be important factors in therapeutic efficacy (P < 0.01). Natural scaffolds and synthetic scaffolds are equally effective in cell transplantation of SCI rats without significant differences. In the future, the findings need to be validated in multicenter, large-scale, randomized controlled trials in clinical practice. Trial registration: Registration ID CRD42024459674 (PROSPERO).


Assuntos
Transplante de Células , Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Traumatismos da Medula Espinal/terapia , Ratos , Alicerces Teciduais/química , Transplante de Células/métodos , Metanálise em Rede , Resultado do Tratamento , Recuperação de Função Fisiológica
3.
PLoS One ; 19(5): e0301998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701071

RESUMO

Celiac disease exhibits a higher prevalence among patients with coronavirus disease 2019. However, the potential influence of COVID-19 on celiac disease remains uncertain. Considering the significant association between gut microbiota alterations, COVID-19 and celiac disease, the two-step Mendelian randomization method was employed to investigate the genetic causality between COVID-19 and celiac disease, with gut microbiota as the potential mediators. We employed the genome-wide association study to select genetic instrumental variables associated with the exposure. Subsequently, these variables were utilized to evaluate the impact of COVID-19 on the risk of celiac disease and its potential influence on gut microbiota. Employing a two-step Mendelian randomization approach enabled the examination of potential causal relationships, encompassing: 1) the effects of COVID-19 infection, hospitalized COVID-19 and critical COVID-19 on the risk of celiac disease; 2) the influence of gut microbiota on celiac disease; and 3) the mediating impact of the gut microbiota between COVID-19 and the risk of celiac disease. Our findings revealed a significant association between critical COVID-19 and an elevated risk of celiac disease (inverse variance weighted [IVW]: P = 0.035). Furthermore, we observed an inverse correlation between critical COVID-19 and the abundance of Victivallaceae (IVW: P = 0.045). Notably, an increased Victivallaceae abundance exhibits a protective effect against the risk of celiac disease (IVW: P = 0.016). In conclusion, our analysis provides genetic evidence supporting the causal connection between critical COVID-19 and lower Victivallaceae abundance, thereby increasing the risk of celiac disease.


Assuntos
COVID-19 , Doença Celíaca , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , SARS-CoV-2 , Doença Celíaca/genética , Doença Celíaca/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , COVID-19/virologia , Humanos , Microbioma Gastrointestinal/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética
4.
IEEE Trans Biomed Eng ; PP2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700959

RESUMO

OBJECTIVE: Early diagnosis of cardiovascular diseases is a crucial task in medical practice. With the application of computer audition in the healthcare field, artificial intelligence (AI) has been applied to clinical non-invasive intelligent auscultation of heart sounds to provide rapid and effective pre-screening. However, AI models generally require large amounts of data which may cause privacy issues. Unfortunately, it is difficult to collect large amounts of healthcare data from a single centre. METHODS: In this study, we propose federated learning (FL) optimisation strategies for the practical application in multi-centre institutional heart sound databases. The horizontal FL is mainly employed to tackle the privacy problem by aligning the feature spaces of FL participating institutions without information leakage. In addition, techniques based on deep learning have poor interpretability due to their "black-box" property, which limits the feasibility of AI in real medical data. To this end, vertical FL is utilised to address the issues of model interpretability and data scarcity. CONCLUSION: Experimental results demonstrate that, the proposed FL framework can achieve good performance for heart sound abnormality detection by taking the personal privacy protection into account. Moreover, using the federated feature space is beneficial to balance the interpretability of the vertical FL and the privacy of the data. SIGNIFICANCE: This work realises the potential of FL from research to clinical practice, and is expected to have extensive application in the federated smart medical system.

5.
Clin Exp Med ; 24(1): 95, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717497

RESUMO

The prognostication of survival trajectories in multiple myeloma (MM) patients presents a substantial clinical challenge. Leveraging transcriptomic and clinical profiles from an expansive cohort of 2,088 MM patients, sourced from the Gene Expression Omnibus and The Cancer Genome Atlas repositories, we applied a sophisticated nested lasso regression technique to construct a prognostic model predicated on 28 gene pairings intrinsic to cell death pathways, thereby deriving a quantifiable risk stratification metric. Employing a threshold of 0.15, we dichotomized the MM samples into discrete high-risk and low-risk categories. Notably, the delineated high-risk cohort exhibited a statistically significant diminution in survival duration, a finding which consistently replicated across both training and external validation datasets. The prognostic acumen of our cell death signature was further corroborated by TIME ROC analyses, with the model demonstrating robust performance, evidenced by AUC metrics consistently surpassing the 0.6 benchmark across the evaluated arrays. Further analytical rigor was applied through multivariate COX regression analyses, which ratified the cell death risk model as an independent prognostic determinant. In an innovative stratagem, we amalgamated this risk stratification with the established International Staging System (ISS), culminating in the genesis of a novel, refined ISS categorization. This tripartite classification system was subjected to comparative analysis against extant prognostic models, whereupon it manifested superior predictive precision, as reflected by an elevated C-index. In summation, our endeavors have yielded a clinically viable gene pairing model predicated on cellular mortality, which, when synthesized with the ISS, engenders an augmented prognostic tool that exhibits pronounced predictive prowess in the context of multiple myeloma.


Assuntos
Morte Celular , Mieloma Múltiplo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Humanos , Prognóstico , Masculino , Feminino , Medição de Risco , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Idoso , Análise de Sobrevida
6.
Front Pediatr ; 12: 1308931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720947

RESUMO

Background: Idiopathic scoliosis significantly affects the physical and mental health of children and adolescents, with varying prevalence rates in different regions. The occurrence of idiopathic scoliosis is associated with genetic regulation and biochemical factors, but the changes in exosome-derived miRNA profiles among idiopathic scoliosis patients remain unclear. This study aimed to determine the prevalence of idiopathic scoliosis in Yunnan Province, China, and identify key exosome-derived miRNAs in idiopathic scoliosis through a cohort study. Methods: From January 2018 to December 2020, a cross-sectional study on idiopathic scoliosis in children and adolescents was conducted in Yunnan Province. A total of 84,460 students from 13 cities and counties in Yunnan Province participated in a scoliosis screening program, with ages ranging from 7 to 19 years. After confirmation through screening and imaging results, patients with severe idiopathic scoliosis and normal control individuals were selected using propensity matching. Subsequently, plasma exosome-derived miRNA sequencing and RT-qPCR validation were performed separately. Based on the validation results, diagnostic performance analysis and target gene prediction were conducted for differential plasma exosome-derived miRNAs. Results: The overall prevalence of idiopathic scoliosis in children and adolescents in Yunnan Province was 1.10%, with a prevalence of 0.87% in males and 1.32% in females. The peak prevalence was observed at age 13. Among patients diagnosed with idiopathic scoliosis, approximately 12.8% had severe cases, and there were more cases of double curvature than of single curvature, with thoracolumbar curvature being the most common in the single-curvature group. Sequencing of plasma exosome-derived miRNAs associated with idiopathic scoliosis revealed 56 upregulated and 153 downregulated miRNAs. Further validation analysis confirmed that hsa-miR-27a-5p, hsa-miR-539-5p, and hsa-miR-1246 have potential diagnostic value. Conclusions: We gained insights into the epidemiological characteristics of idiopathic scoliosis in Yunnan Province and conducted further analysis of plasma exosome-derived miRNA changes in patients with severe idiopathic scoliosis. This study has provided new insights for the prevention and diagnosis of idiopathic scoliosis, paving the way for exploring clinical biomarkers and molecular regulatory mechanisms. However, further validation and elucidation of the detailed biological mechanisms underlying these findings will be required in the future.

7.
Diabetes Obes Metab ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699782

RESUMO

AIM: To investigate the effects of adenosine kinase (ADK), a key enzyme in determining intracellular adenosine levels, on ß cells, and their underlying mechanism. METHODS: Genetic animal models and transgenic immortalized cells were applied to study the effect of ADK on islet beta-cell proliferation and function. The beta-cell mass and response to glucose were measured in vivo using mice with beta-cell-specific ADK overexpression, and in vitro using ADK-overexpressed immortalized beta-cell. RESULTS: The expression of ADK in human islets at high abundance, especially in ß cells, was decreased during the process of ß-cell proliferation. Additionally, a transgenic mouse model (ADKtg/tg /Mip-Cre) was generated wherein the mouse Insulin1 gene promoter specifically overexpressed ADK in pancreatic ß cells. The ADKtg/tg /Mip-Cre model exhibited impaired glucose tolerance, decreased fasting plasma insulin, loss of ß-cell mass, and inhibited ß-cell proliferation. Proteomic analysis revealed that ADK overexpression inhibited the expression of several proteins that promote cell proliferation and insulin secretion. Upregulating ADK in the ß-cell line inhibited the expression of ß-cell related regulatory molecules, including FoxO1, Appl1, Pxn, Pdx-1, Creb and Slc16a3. Subsequent in vitro experiments indicated that the inhibition of ß-cell proliferation and the decreased expression of Pdx-1, Creb and Slc16a3 were rescued by DNA methyltransferase 3A (DNMT3A) knockdown in ß cells. CONCLUSION: In this study, we found that the overexpression of ADK decreased the expression of several genes that regulate ß cells, resulting in the inhibition of ß-cell proliferation and dysfunction by upregulating the expression of DNMT3A.

8.
RSC Adv ; 14(16): 10884-10896, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577423

RESUMO

A rheo-microscopy in situ synchronous measurement system was utilized to investigate the dynamic behavior of water droplets in W/O waxy crude oil emulsions subjected to dynamic cooling conditions, the microstructural evolution of water droplets aggregates can be categorized into three stages based on the various forms of wax crystals. The results show that under the joint action of wax crystals and water droplets, the water droplets aggregation trend and complexity in the system are negatively correlated with the changes of temperature and shear rate, and the water droplets movement behavior is positively correlated with the changes of temperature and shear rate. As the temperature decreases, the minimum edge distance of water droplets decreases by a maximum of 32.1%, the specific surface area (SA) decreases by a maximum of 12.0%, and the fractal dimension increases by a maximum of 11.7%. As the shear rate increases, the minimum edge distance of water droplets increases by up to 27.9%, the specific surface area (SA) increases by up to 10.1%, and the fractal dimension decreases by up to 8.5%. Additionally, an analysis is conducted on the collision aggregation behavior of water droplets in shear flow field based on population balance theory.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38568769

RESUMO

As the most common complication of diabetes, diabetic retinopathy (DR) is one of the main causes of irreversible blindness. Automatic DR grading plays a crucial role in early diagnosis and intervention, reducing the risk of vision loss in people with diabetes. In these years, various deep-learning approaches for DR grading have been proposed. Most previous DR grading models are trained using the dataset of single-field fundus images, but the entire retina cannot be fully visualized in a single field of view. There are also problems of scattered location and great differences in the appearance of lesions in fundus images. To address the limitations caused by incomplete fundus features, and the difficulty in obtaining lesion information. This work introduces a novel multi-view DR grading framework, which solves the problem of incomplete fundus features by jointly learning fundus images from multiple fields of view. Furthermore, the proposed model combines multi-view inputs such as fundus images and lesion snapshots. It utilizes heterogeneous convolution blocks (HCB) and scalable self-attention classes (SSAC), which enhance the ability of the model to obtain lesion information. The experimental results show that our proposed method performs better than the benchmark methods on the large-scale dataset.

10.
J Inflamm (Lond) ; 21(1): 12, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644501

RESUMO

BACKGROUND: Interplay between systemic inflammation and programmed cell death contributes to the pathogenesis of acute lung injury (ALI). cAMP-regulated transcriptional coactivator 1 (CRTC1) has been involved in the normal function of the pulmonary system, but its role in ALI remains unclear. METHODS AND RESULTS: We generated a Crtc1 knockout (KO; Crtc1-/-) mouse line. Sepsis-induced ALI was established by cecal ligation and puncture (CLP) for 24 h. The data showed that Ctrc1 KO substantially ameliorated CLP-induced ALI phenotypes, including improved lung structure destruction, reduced pulmonary vascular permeability, diminished levels of proinflammatory cytokines and chemokines, compared with the wildtype mice. Consistently, in lipopolysaccharide (LPS)-treated RAW264.7 cells, Crtc1 knockdown significantly inhibited the expression of inflammatory effectors, including TNF-α, IL-1ß, IL-6 and CXCL1, whereas their expressions were significantly enhanced by Crtc1 overexpression. Moreover, both Crtc1 KO in mice and its knockdown in RAW264.7 cells dramatically reduced TUNEL-positive cells and the expression of pro-apoptotic proteins. In contrast, Crtc1 overexpression led to an increase in the pro-apoptotic proteins and LPS-induced TUNEL-positive cells. Mechanically, we found that the phosphorylation of Akt was significantly enhanced by Crtc1 knockout or knockdown, but suppressed by Crtc1 overexpression. Administration of Triciribine, an Akt inhibitor, substantially blocked the protection of Crtc1 knockdown on LPS-induced inflammation and cell death in RAW264.7 cells. CONCLUSIONS: Our study demonstrates that CRTC1 contribute to the pathological processes of inflammation and apoptosis in sepsis-induced ALI, and provides mechanistic insights into the molecular function of CRTC1 in the lung. Targeting CRTC1 would be a promising strategy to treat sepsis-induced ALI in clinic.

11.
Polymers (Basel) ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611124

RESUMO

The antioxidant activity of chitosan (CS) and three water-soluble derivatives was analyzed comparatively by in vitro and in vivo experiments, including hydroxypropyl chitosan (HPCS), quaternary ammonium salt of chitosan (HACC), and carboxymethyl chitosan (CMCS). The results show that chitosan and its water-soluble derivatives have a scavenging ability on DPPH radicals, superoxide radicals, and hydroxyl radicals, and a reducing ability. A remarkable difference (p < 0.05) was found for HACC and HPCS compared with CS on DPPH radicals, hydroxyl radicals, and reducing ability. The antioxidant ability of the four chitosan samples was in the order of HPCS > HACC > CMCS > CS. Furthermore, antioxidant activity of all samples increased gradually in a concentration-dependent manner. The in vivo result indicates that oral CS and its derivatives samples result in a decrease in lipid peroxides (LPO) and free fatty acids (FFA) levels in serum with an increase in superoxide dismutase (SOD) activity. Especially for the HPCS and HACC groups, the LPO, FFA, and SOD activity in serum was different significantly in comparison with the high-fat controlgroup (HF) (p < 0.05). These results indicate that chitosan and its derivatives can be used as good antioxidants, and the antioxidant activity might be related to the molecular structure of chitosan derivatives.

12.
Heliyon ; 10(7): e29307, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623214

RESUMO

Against the backdrop of frequent extreme climates and international consensus on green and low-carbon development, Environmental, Social, and Governance (ESG) has progressively drawn increasing attention. Integrating the perspectives of stakeholder theory and signaling theory, this study employed the Malmquist-Luenberger productivity index, fixed-effects regression model, mediating effect model, propensity matching score difference-in-differences model, and a two-stage least squares method. Using the research sample of Chinese A-share listed companies between 2011 and 2021, the mechanisms linking ESG ratings and each component (the individual scores of E, S, and G) with the green innovation and green total factor productivity (GTFP) of enterprises were investigated. This study conducted heterogeneity analysis integrating regional, industry, and enterprise dimensions, fully considered the potential endogeneity issues, and conducted multiple robustness tests by exploring alternative approaches, replacing the measures of indicators, and reducing the research sample. The results demonstrated that higher ESG ratings significantly improved the green innovation and GTFP of enterprises. This improvement was achieved through the stakeholders and signaling mechanisms, and was more prominent in economically underdeveloped regions, patent-intensive industries, and industries with lower environmental risk. In addition, the impact varied among enterprises with different property rights. The findings elucidate the pathways through which soft regulation influences micro-level corporate decision-making, making significant contributions to the literature. Furthermore, this study provides a theoretical foundation and policy reference for constructing a positive feedback loop mechanism for ESG ratings and promoting the green transformation and upgrading of enterprises.

13.
Surg Endosc ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658391

RESUMO

INTRODUCTION: Surgery is currently the only effective treatment for retroperitoneal tumors that do not involve any specific organ. The use of robots for removing both benign and malignant retroperitoneal tumors is considered safe and feasible. However, there is insufficient evidence to determine whether robotic retroperitoneal tumor resection (RMBRs) is superior to open retroperitoneal malignant resection (OMBRs). This study compares the short-term outcomes of robotic excision of benign and malignant retroperitoneal tumors with open excision of the same-sized tumors. METHODS: The study compared demographics and outcomes of patients who underwent robotic resection (n = 54) vs open resection (n = 54) of retroperitoneal tumors between March 2018 and December 2022. A 1:1 matching analysis was conducted to ensure a fair comparison. RESULTS: The study found that RBMRs resulted in reduced operative time (OT), estimated blood loss (EBM), and postoperative hospital stay (PSH) when compared to OBMRs. Additionally, RBMRs reduced EBL, PHS, and OT for patients with malignant tumor involvement in major vessels. No significant differences were found in tumor size, blood transfusion rate, and morbidity rate between the RBMRs and OBMRs groups. CONCLUSION: When comparing RMBRs to OMBRs, it was observed that RMBR was associated with lower (EBL), shorter postoperative hospital stays (PHS), and reduced operative time (OT) in a specific group of patients with both benign and malignant tumors.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38659088

RESUMO

Gas sensors for real-time monitoring of low HCHO concentrations have promising applications in the field of health protection and air treatment, and this work reports a novel resistive gas sensor with high sensitivity and selectivity to HCHO. The MOF-derived hollow In2O3 was mixed with ZIF-67(Co) and calcined twice to obtain a hollow Co3O4/In2O3 (hereafter collectively termed MZO-6) composite enriched with oxygen vacancies, and tests such as XPS and EPR proved that the strong interfacial electronic coupling increased the oxygen vacancies. The gas-sensitive test results show that the hollow composite MZO-6 with abundant oxygen vacancies has a higher response value (11,003) to 10 ppm of HCHO and achieves a fast response/recovery time (11/181 s) for HCHO at a lower operating temperature (140 °C). The MZO-6 material significantly enhances the selectivity to HCHO and reduces the interference of common pollutant gases such as ethanol, acetone, and xylene. There is no significant fluctuation of resistance and response values in the 30-day long-term stability test, and the material has good stability. The synergistic effect of the heterostructure and oxygen vacancies altered the formaldehyde adsorption intermediate pathway and reduced the reaction activation energy, enhancing the HCHO responsiveness and selectivity of the MZO-6 material.

15.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589689

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.

16.
Small ; : e2309656, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686693

RESUMO

Bi/CeO2 (BC-x) photocatalysts are successfully prepared by solvothermal loading Bi nanoparticles and Bi-doped CeO2 derived by Ce-MOF (Ce-BTC). Formaldehyde gas (HCHO) and tetracycline hydrochloride (HTC) are used to evaluate the photocatalytic activity of the synthesized Bi/CeO2. For BC-1000 photocatalyst, the degradation of HTC by 420 nm < λ < 780 nm light reaches 91.89% for 90 min, and HCHO by 350 nm < λ < 780 nm light reaches 94.66% for 120 min. The photocatalytic cycle experiments prove that BC-1000 has good cyclic stability and repeatability. The results of photoluminescence spectra, fluorescence lifetime, photocurrent response, and electrochemical impedance spectroscopy showed that the SPR (Surface Plasmon Resonance) effect of Bi nanoparticles acted as a bridge and promoted electron transfer and enhanced the response-ability of Bi/CeO2 to visible light. Bi-doping produced more oxygen vacancies to provide adsorption sites for adsorbing oxygen and generated more ·O2 - thus promoting photocatalytic reactions. The mechanism of photocatalytic degradation is analyzed in detail utilizing active free radical capture experiments and electron paramagnetic resonance (EPR) characterization. The experimental results indicate that ·O2 - and h+ active free radicals significantly promote the degradation of pollutants.

17.
CNS Neurosci Ther ; 30(3): e14638, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488445

RESUMO

AIMS: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS: We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS: Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION: Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Transtornos dos Movimentos , Humanos , Camundongos , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Cerebelo , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38438071

RESUMO

BACKGROUND: Exosomes can penetrate the blood-brain barrier for material exchange between the peripheral and central nervous systems. Differences in exosome contents could explain the susceptibility of different individuals to depression-like behavior after traumatic spinal cord injury (TSCI). METHODS: Hierarchical clustering was used to integrate multiple depression-related behavioral outcomes in sham and TSCI rats and ultimately identify non-depressed and depressed rats. The difference in plasma exosome contents between non-depressed and depressed rats after TSCI was assessed in 15 random subjects by performing plasma exosome transcriptomics, mass spectroscope-based proteomics, and non-targeted metabolomics analyses. RESULTS: The results revealed that about 27.6% of the rats developed depression-like behavior after TSCI. Totally, 10 differential metabolites, 81 differentially expressed proteins (DEPs), 373 differentially expressed genes (DEGs), and 55 differentially expressed miRNAs (DEmiRNAs) were identified between non-depressed TSCI and sham rats. Meanwhile, 37 differential metabolites, 499 DEPs, 1361 DEGs, and 89 DEmiRNAs were identified between depressed and non-depressed TSCI rats. Enrichment analysis showed that the progression of depression-like behavior after TSCI may be related to amino acid metabolism disorder and dysfunction of multiple signaling pathways, including endocytosis, lipid and atherosclerosis, toll-like receptor, TNF, and PI3K-Akt pathway. CONCLUSION: Overall, our study systematically revealed for the first time the differences in plasma exosome contents between non-depressed and depressed rats after TSCI, which will help broaden our understanding of the complex molecular mechanisms involved in brain functional recombination after TSCI.


Assuntos
Exossomos , MicroRNAs , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Depressão/etiologia , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo
19.
Acta Pharm Sin B ; 14(3): 1412-1427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486994

RESUMO

Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.

20.
Chem Sci ; 15(10): 3530-3538, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455020

RESUMO

Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA